当前位置:数据网络技术专区 → 正文

从socket到TCP协议,透彻理解网络编程

责任编辑:zsheng |来源:银河国际平台网D1Net  2019-02-18 15:26:56 本文摘自:百家号

进行程序开发的同学,无论Web前端开发、Web后端开发,还是搜索引擎和大数据,几乎所有的开发领域都会涉及到网络编程。比如我们进行Web服务端开发,除了Web协议本身依赖网络外,通常还需要连接数据库,而数据库连接通常是通过网络连接数据库服务器,或者数据库集群,如果负载太高还要搞个缓存集群。

我们在上学的时候基本学了网络编程和网络协议。但两者之间的具体关系可能有些摸不到头脑。这里我们首先重点介绍2个概念,一个概念是网络编程,另外一个是协议。

我们知道网络协议是一个分层的协议族,也就是是有一组协议构成,从下往上各自负责各自的功能。那什么是协议呢?协议的字面意思是共同计议,商议。简单的理解其实就是多方进行沟通的规定。而网络协议其实就是在网络中多个计算节点进行交互、沟通的规定。如果根我们日常生活对比的话,协议可以理解为语言,比如汉语普通话。两个人交流如果都用不通话,那么彼此都能理解对方表达的意图。例如,一个人用四川话,而另外一个用浙江话,那沟通起来估计几乎不太可能。网络协议也是一样的,通过对数据格式的规范化,从而使计算机之间能够彼此明确对方的意图。

下面本文介绍一下网络编程,网络编程也称为socket编程,socket通常译作“套接字”,但原意其实意译应该为”接口“。也就是操作系统提供给开发人员进行网络开发的API接口。这套接口通常可以参数的调整支持多种协议,包括TCP、UDP和IP等等。下面本文从套接字编程和协议两方面分别详细的进行介绍。

网络编程

为了便于理解,本文先从具体的内容开始,也就是通过一个实例介绍一下网络编程是怎么回事。

本文将以TCP协议为例介绍网络编程和协议之前的关系。为了简单,便于理解,本文以Python为例进行介绍,如果不了解Python编程语言关系也不大,下面代码很容易理解。我们知道在网络通信中无论是BS架构还是CS架构,通常分为服务端和客户端,只不过BS架构中的浏览器就是客户端。因此,本文的示例也包含服务端和客户端2部分的代码。代码功能很简单,就是实现客户端和服务端发送字符串。

客户端服务端通信模型

这个代码清单是服务端的代码,这段代码的作用就是在服务端的某个端口建立监听,并等待客户端建立连接。完成连接建立后,等待客户端发送数据,并将数据回传给客户端。

#!/usr/bin/env python3#-*- coding:utf-8 -*-from socket import *from time import ctimehost = ''port = 12345buffsize = 2048ADDR = (host,port)# 创建一个基于TCP协议的套接字tctime = socket(AF_INET,SOCK_STREAM)tctime.bind(ADDR)# 在指定的地址和端口监听tctime.listen(3)while True:print('Wait for connection ...') tctimeClient,addr = tctime.accept()print("Connection from :",addr) while True: data = tctimeClient.recv(buffsize).decode() if not data: breaktctimeClient.send(('[%s] %s' % (ctime(),data)).encode())tctimeClient.close()tctimeClient.close()

阅读服务端的代码可以看出主要包括,socket、bind、listen、accept、recv和send几个。其中值得关注的是listen和accept,两者分别用于监听端口和接受客户端的连接请求。

下面代码清单是客户端的实现,这里特别的地方是有一个connect函数,该函数实现与服务端建立连接。

#!/usr/bin/env python3#-*- coding:utf-8 -*-from socket import *HOST ='localhost'PORT = 12345BUFFSIZE=2048ADDR = (HOST,PORT)tctimeClient = socket(AF_INET,SOCK_STREAM)tctimeClient.connect(ADDR)while True:data = input(">") if not data: breaktctimeClient.send(data.encode()) data = tctimeClient.recv(BUFFSIZE).decode() if not data: breakprint(data)tctimeClient.close()

通过上述示例代码可以看出服务端通常是被动的,而客户端则要主动一些。服务端程序建立对某个端口的监听,等待客户端的连接请求。客户端向服务端发送连接请求,不出意外的情况下连接建立成功,这时客户端和服务端之前就可以互发数据了。当然,在实际生产环境中意外是经常的,因此从协议和接口层面,需要处理各种意外,本文在协议部分将详细介绍。

另外,本文实现了一个基本的客户端和服务端通信的程序,这个模式的通信在实际生产中几乎不再使用。在实际生产中为了提高数据传输和处理的效率,通常采用异步模式,这些内容超出了本文的介绍范围,后续文章会逐渐介绍。

TCP协议详解

前文说了网络协议是网络中不同计算机信息通信的语言,为了实现交互,这个语言就需要有一定的格式。本文以TCP协议为例进行介绍。

TCP协议是一个可靠的传输协议,其可靠性表现在2方面,一方面是保证数据包可以按照发送的顺序到达,另外一方面是保证数据包一定程度的正确性(后文详解为什么是一定程度上的正确性)。其可靠性的实现则基于2点技术,一点是具有一个CRC校验,这样如果数据包中的某些数据出现错误可以通过该校验和发现;另外一点是每个数据包都有一个序号,这样就能保证数据包的顺序性,如果出现错位的数据包可以请求重发。

既然说到了格式,那我们先看一下TCP数据包的数据格式。如下图是TCP数据包的格式,包括原端口、目的端口、序列号和标识位等等内容,内容有些多,看着可能有点眼花。但从大的方面理解,这个数据包其实只包含2部分内容,一个是包头,另外一个则是具体需要传输的数据。在TCP协议的控制逻辑中,包头起着最为关键的作用,它是TCP协议中诸如建立连接、断开连接、重传和错误校验等各种特性的基础。

包头的其它信息的含义都比较明了,本文仅仅介绍几个标志位(URG、ACK、PSH、RST、SYN和FIN)的含义。具体含义如下:

ACK: 确认序号有效。

RST:重置连接

SYN:发起一个新连接

FIN:释放一个连接

连接的建立TCP在具体传输数据之前需要建立连接。这里的连接并不是物理连接,物理连接基于底层的协议已经建立完成,而且TCP建立连接也是要假设底层连接已经成功,TCP的连接其实是一个虚拟的,逻辑的连接。简单粗暴的理解,就是客户端和服务端分别记录了各自接受到的数据包的序号,并且将自身设置为某种状态。在TCP协议中,连接的建立通常成为3次握手,从字面的概念可以看出,连接的建立需要经过3次确认的过程。

TCP协议3次握手的过程如图所示,初始状态客户端和服务端都处于关闭状态。主要过程分为3步:

客户端发送预连接数据包: TCP的连接是由客户端主动发起建立,客户端会发送一个数据包(报文)给服务端,需要注意的是数据包中的SYN标识位为1。我们前文已经介绍,如果SYN为1,则说明为建立连接的数据包。同时,在该数据包中包含一个请求序列号,该序列号也是建立连接的依据。

服务端回复连接确认: 服务端确认可以建立连接(服务端不一定可以建立连接,因为系统中套接字的数量是有限的)的情况下会向客户端发送一个应答数据包。在应答数据包中会将ACK标志位设置为1,表示为服务端应答数据包。同时,在应答数据包中会设置请求序列号和应答序列号的值,具体参考图3.

客户端回复连接确认: 最后,客户端再次发送一个连接确认数据包,告诉服务端连接建立成功。

从上面流程可以看出,连接的建立需要经过多次交互,这就是我们日常中所说的建立连接是高成本的操作。在实际生产环境中,为了应对这个问题,会减少连接建立的频度,通常的做法是建立连接池,传输数据时直接从连接池中获取连接,而不是新建连接。

有人可能觉得可以对建立连接的过程进行优化,比如将客户端最后一次的确认取消掉,觉得这个没有卵用。对于正常情况确实没有多大的作用,这里主要是应对异常情况。因为网络拓扑是非常复杂的,特别是在广域网中,有着数不清的网络节点,因此会出现各种异常情况。因此,TCP协议在设计的时候必须要保证异常情况下的可靠性。

我们这里举一个例子,就是连接请求超时的情况。假设客户端向服务端发送一个连接请求,由于各种原因,请求一直没有到达服务端,因此服务端也就没有回复连接确认消息。客户端连接超时,因此客户端重新发送一个连接请求到服务端,这次比较顺利,很快到达了,并且顺利建立了连接。之后,前一个数据包经过长途跋涉最终还是到了服务端,服务端也向客户端发送了回复数据包,服务端认为连接是建立成功的,并且会维持连接。但客户端层面认为连接是超时的,因此将永远不会关闭该连接。这样就会造成服务端有残留的资源,从而造成服务端资源浪费,久而久之可能会导致服务端无新连接资源可用。

另外一个需要说明的是客户端和服务端的套接字都有相应的状态,而且状态会随着连接的不同阶段变化。初始状态都是CLOSE,最终连接建立成功后都是ESTABLISHED,具体变化过程如图3所示。后面本文会详细介绍状态变化情况。

传输数据完成连接建立之后,客户端和服务端就可以进行数据传输了。我们知道TCP是可靠的传输,那么传输的可靠性是通过什么来保证的呢?主要就是通过包头中的校验和、请求序列号和应答序列号(参考图2)。

TCP数据内容的可靠性是通过校验和保证的。TCP在发送数据时都会计算整个数据包的校验和,并存储在包头的校验和字段中。接收方会按照规则进行计算,从而确认接收到的数据是否是正确的。发送发计算校验和的流程大概如下:

把伪首部、TCP包头和TCP数据分为16为的字,并把TCP包头中的校验和字段置0

用反码加法累加所有16位数字

对计算结果去反,将其填充到TCP包头的校验和字段

接收方将所有原码相加,高位叠加,如果全为1则表示数据正确,否则说明数据有错误。

TCP数据包顺序的可靠性是通过请求序列号和应答序列号保证的。在数据传输中的每个请求都会有一个请求序列号,而在接收方接收到数据后会发送一个应答序列号,这样发送方就能知道数据是否被正确接收,而接收方也能知道数据是否出现乱序,从而保证数据包的顺序性。

断开连接TCP关闭连接分为4步,称为4次挥手。连接的关闭不一定是在客户端发起,服务端也可以发起关闭连接。关闭连接的过程如下:

发起方发送一个FIN置位的数据包,用来请求关闭发送方到接收方的连接

接收方发送一个应答,ACK标志位为1,确认关闭。此时完成了发起方到接收方的连接,也即发送方无法再向接收方发送数据,但接收方还可以向发送方发送数据。

接收方数据传输完成后向发起方发送一个FIN为1的包,表示请求断开连接

发起方回复一个ACK包,确认关闭成功

关闭连接流程示意图

TCP是全双工通信,因此关闭连接时需要双向关闭连接。首先是关闭发起方关闭本端的连接,然后是关闭接收方在收到发起方的关闭请求后,除了回复关闭应答外,还要确保数据传输完成后发起一个关闭连接的请求,保证双向同时关闭。

截止到这里,本文介绍了基于TCP协议进行网络编程的主要内容。当然这个只是入门级的,如果需要真正理解TCP协议和网络编程还需要学习很多内容。后续本号将陆续介绍给大家。

关键字:网络 协议 TCP

本文摘自:百家号

从socket到TCP协议,透彻理解网络编程 扫一扫
分享本文到朋友圈

关于我们联系我们版权声明友情链接广告服务会员服务投稿中心招贤纳士

银河国际平台网版权所有©2010-2019 京ICP备09108050号-6

^